
1

Scalability and Schedulability in Large, Coordinated, Distributed Robot
Systems

John D. Sweeney, Huan Li, Roderic A. Grupen, and Krithi Ramamritham
Laboratory for Perceptual Robotics
Department of Computer Science

University of Massachusetts, Amherst
{sweeney, lihuan, grupen, krithi}@cs.umass.edu

Abstract— Multiple, independent robot platforms promise
significant advantage with respect to robustness and flexi-
bility. However, coordination between otherwise independent
robots requires the exchange of information; either implicitly
(as in gestural communication), or explicitly (as in message
passing in a communication network.) In either case, control
processes resident on all coordinated peers must participate
in the collective behavior. This paper evaluates the potential
to scale such a coupled control framework to many partici-
pating individuals, where scalability is evaluated in terms of
the schedulability of coupled, distributed control processes.

We examine how schedulability affects the scalability of
a robot system, and discuss an algorithm used for off-
line schedulability analysis of a distributed task model. We
present a distributed coordinated search task and analyze
the schedulability of the designed task structure. We are
able to analyze communication delays in the system that put
upper bounds on the size of the robot teams. We show that
hierarchical methods can be used to overcome the scalability
problem. We propose that schedulability analysis should be
an integrated part of a multi-robot team design process.

Keywords: multi-robot systems, schedulability analysis,
coordinated control

I. INTRODUCTION

As robotic technology becomes more mature, imple-
menting distributed robot systems with a large number of
robots will be possible. The expense and mean-time to
failure of component hardware limit the size of fieldable
teams to tens of robots [3]. However, in the future we can
expect that developing technology will allow, and appli-
cations will require, teams with an order of magnitude
more robots. While swarms of robots are an attractive
idea, they are also frequently assumed to be composed of
independent platforms and control processes. To do useful
work, we may have to coordinate the activity of several
robots, which introduces processing and communication
constraints among the team. In this paper, we propose a
coordination model and evaluate the bounds on coordi-
nated robots teams that arise due to those constraints.

We present a distributed, coupled control framework ap-
plied to a leader/follower search task. The distributed con-
troller can address multiple, concurrent objectives while

This work was supported in part by NSF CDA-9703217,
DARPA/IPTO DABT63-99-1-0022 and DABT63-99-1-0004.

maintaining global behavior constraints. Robust, closed-
loop controllers are defined as primitives within the control
architecture. Multiple controllers are combined via the
nullspace projection operator: subordinate control actions
are projected onto the nullspace of superior controllers, so
that incorrect interactions between controllers are avoided.
This allows “best-effort” guarantees to be made about
global behavior. In the task of leader/follower search,
the leader must concurrently search while maintaining
connectivity by remaining within line-of-sight (LOS) of
the follower.

In any robot system, interaction with the world imposes
a real-time constraint on computation, whose logical cor-
rectness depends on the correctness of its outputs as well
as their timeliness. The robot must be able to process
sensor input, respond to dynamic environments, and send
messages to other robots. Real-time specifications for such
systems are derived from time constraints in the control
processes and in the environment. If the system is unable
to perform distributed control tasks in a timely manner,
then overall performance suffers.

In this paper, we look at the issue of scalability from
the perspective of real-time schedulability. A distributed
multi-robot system is viewed as a collection of homo-
geneous processors. Each robot has a set of tasks that
run periodically, with data flow between tasks on a sin-
gle robot and between tasks on different robots. In the
context of a real-time multi-robot system, schedulability
analysis determines whether all tasks in the system can be
scheduled to some period and deadline. We propose that
schedulability analysis should be an integral part of the
multi-robot system design process.

The paper is organized as follows. First we briefly
present related work, then we give an overview of the
distributed controller for concurrent, multi-objective tasks
presented in [13]. This distributed controller is used to
perform a leader/follower search task. Then we examine
the controller using the algorithm developed in [8] for off-
line schedulability analysis. We finish with conclusions
and future work.

II. RELATED WORK

The control framework described in this paper is based
on a bottom-up approach to control, similar to approaches
such as the subsumption architecture [2], where robust,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Scalability and Schedulability in Large, Coordinated, Distributed Robot
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

low-level control primitives are combined to produce
high-level behaviors. Individual controllers are constructed
using the control basis approach [5], [13].

There is a lot of work in the literature on cooperative
multi-robot teams, such as [3], which presents an overview
of cooperative robotic techniques. However, the issue of
the scalability of the coordination scheme is not fully
addressed. Carpin et al. [4] have presented an approach for
the leader/follower application. Their system is designed
to allow teams of any size, however, they do not address
the effects of using broadcast communications on the
effective team size. Yoshida et al. [14] have examined how
information propagation within a team and team perfor-
mance were affected by using a shared communication
channel and team size, but they did not consider real-time
computing constraints.

Real-time operating systems for robotics that allow
communication among distributed resources have been
developed [1], [12]. There are also tools for designing
controllers for real-time robotic systems such as [10].
Schedulability analysis for distributed real-time systems
has also received a lot of attention in recent years [9]. For
tasks with temporal constraints, researchers have focused
on generating task attributes (e.g., period, deadline and
phase) with the objective of minimizing the utilization
and/or maximizing system schedulability while satisfying
all temporal constraints. However, schedulability is clearly
affected by both temporal characteristics and allocation
of real-time tasks. A more comprehensive approach that
takes into consideration task temporal characteristics and
allocations, in conjunction with schedulability analysis, is
required.

III. DISTRIBUTED, COORDINATED

LEADER/FOLLOWER CONTROLLERS

We first give a brief overview of the architecture for
reactive, coordinated controllers that address multiple,
concurrent objectives in a mobile robot team, described in
[13]. An example application of such a system is a multi-
robot search task. Each robot is equipped with sensors
specific to the search goal, in this case IR proximity
sensors, and wireless communication. A team of robots R

must search an unknown environment, while maintaining
wireless connectivity throughout the team. The limited
range of the wireless transmitters imposes a path constraint
on the members of the team in that any pair of robots
must ensure they are within line-of-sight (LOS) and within
range specifications for the desired QoS or bandwidth in
order to guarantee connectivity.

The control basis approach constructs a controller φS

E
by

associating a state estimator, S, and effectors, E , with an
objective function, or artificial potential, φ. In this paper,
our artificial potentials are harmonic functions represented
by discrete occupancy maps [6]. For example, the con-
troller that enforces the LOS constraint is φLOSi

j , i, j ∈ R,

where robot i generates the LOS region (computed from
its position and an obstacle map), and robot j tries to
stay within the LOS region by descending the potential

φ. The search controller is φS
i , where robot i achieves

search goal states S by greedy action on φ. The leader’s
search task implicitly avoids obstacles since it computes
trajectories that move the leader away from obstacles and
toward unexplored space.

A. The “Pull” Controller

A pairwise, concurrent, coordinated controller (denoted
a “pull” controller) is constructed that allows the leader to
search as long as the follower is within the LOS region:

φS
i / φLOSi

j , (1)

where i is the leader and j is the follower. The “subject-
to” operator (/) allows concurrency by projecting the
trajectory from φS

i onto the nullspace of φLOSi

j (using
the Moore-Penrose pseudoinverse, for example); ensuring
that the leader’s search task does not interact destructively
with the LOS task. Here, the nullspace of φLOSi

j refers
to the nullspace of the Jacobian that maps changes in
wheel displacements of robot j onto changes in the value
of the artificial potential defined by φLOSi . In general,
planar mobile robots are not redundant with respect to
their configuration space. However, a planar mobile robot
may be redundant with respect to some objective function.

In addition to two robots, multiple robots can form a
serial, kinematic chain by combining pull controllers. The
robot at the head of the chain executes the controller in
equation (1), while a robot k within the chain is involved
in a pairwise pull controller with its neighbors:

φLOSk+1

k / φLOSk

k−1
. (2)

The robot at the base of the chain is assumed to be
a stationary communications hub for the team. This pull
chain allows the leader to explore a great distance from
the hub.

The leader/follower pull controller described above is
implemented with two of our UMASS UBot mobile
robots, each one using a 206 MHz StrongARM CPU
with the K-Team Kameleon motor driver board. The
controllers are implemented using the Player/Stage robot
control system [7]. In the next section we describe our
method of real-time schedulability analysis in a distributed
control system, and analyze the schedulability of the pull
controller.

IV. OUR APPROACH FOR REAL-TIME

SCHEDULABILITY ANALYSIS

Equation (1) describes a coordinated controller that
involves several processes: sensor processing to determine
S and LOSi, motor Jacobians that generate wheel ve-
locities on platforms i and j, and processes that descend
potential functions. From the real-time systems view, the
scalability of such a scheme involves the ability to find
feasible schedules as the task and processor sets increase,
i.e., as the number of robots increases. The real-time
constraint imposes a hard deadline on the amount of
processing that can be completed in a given period of
time. If robots are independent and do not collaborate in

3

a coordinated control scheme, then scalability is not an
interesting problem, since it becomes one of scheduling on
an individual robot, which has been widely studied [11].
However, if the team members are cooperative, then, in
addition to task constraints such as periods or deadlines,
system level constraints are also introduced.

For instance, in order to achieve a common goal, robots
may exchange messages. Therefore, communication costs
and precedence constraints must be considered. The diffi-
culty is that scheduling tasks with precedence constraints
and individual deadlines for a multiprocessor system is
an NP-complete problem even for unit processing time of
each task. We propose a heuristic algorithm that takes into
account all types of constraints to predict the scalability
and schedulability for a large, recursive robot system [8].
In this context, recursive means that the task model of
the system has a symmetric structure that can be easily
generalized to accommodate additional robots. The pull
controller is an example of a recursive, distributed system.

In the following sections, we will briefly review the
system model and our approach to do real-time schedula-
bility analysis for distributed coordinated robotics, which
is discussed in [8].

A. System Model

The distributed robot system consists of m identical
uni-processor sites. In this paper, we use site and robot

interchangeably. The sites are connected by a shared
communication medium from one site to another. Com-
munications must be scheduled at specific times to assure
that no contention for the channel occurs at run time.

Tasks we study here are real-time tasks that have the
following characteristics:

• Period. This defines the inter-release times of in-
stances of the task. One instance of the task should
be executed every period.

• Relative deadline. This specifies the time at which
each task instance must be completed.

• Computation time. This is the worst case execution
time of any instance of the task.

• Precedence relationships. These constrain the ex-
ecution order of the tasks and the production and
consumption relationships of the data flow.

• Locality constraints. These relationships are based
on the nature of the environment required for tasks
to execute. For example, actuator control tasks must
run on the processor that connects to the actuator.
In this distributed task model, tasks without locality
constraints can be assigned to any available proces-
sor.

• Communication constraints. Communication be-
tween tasks that are on different sites requires a
communication medium and time to send or receive
the message. Messages sent between tasks must be
scheduled with the communication medium as a re-
source requirement. If the communication is modeled
as a special task, then this task must satisfy the

IR1,2 POS1,2 M1,2 φS
2

LOS2 / φ
LOS2

1

20 20 20 25 1 10 25

TABLE I

WORST-CASE EXECUTION TIME (IN MILLISECONDS) FOR THE TASKS

IN FIGURE 1.

precedence constraints with the two communicating
tasks separately.

B. Algorithm Overview

In order to help understand the method, we now present
a brief overview of the schedulability algorithm described
in [8]. The first step of the algorithm assigns unallocated
tasks to sites. A heuristic, which takes into account
the trade-off between communication cost and processor
workload, is used to assign tasks to sites. The basic idea of
the heuristic is to cluster tasks with a high communication
cost together on the same site while minimizing the
utilization of each processor.

Next, we construct an extended task graph that includes
communications represented as tasks. The algorithm uses
communication tasks to model the communication cost
and channel contention that occurs if the tasks are allo-
cated to different sites. Then we build a comprehensive
graph containing all instances of all tasks including com-
munication tasks that will execute within the least com-
mon multiple (LCM) of all task periods, and preprocess
precedence relations of tasks by setting up the relative
earliest start time of consumers. Finally, a search is used to
find a feasible schedule, if possible, mapping starting times
to all tasks including communication, to determine if they
can start and complete execution before their deadlines.

C. Pull Controller Analysis

The task model for the pull controller with two robots
is shown in Figure 1. Every robot must execute IR
obstacle detection tasks, denoted by IRi, odometry tasks,
POSi, and motor control tasks, Mi. The three tasks IRi,
POSi, and Mi, which are drawn with solid ellipses, are
specific to the hardware of each robot, so they are all
preallocated to run locally on each robot. The control tasks
φS

2 and φLOS2

1 , the nullspace projection /2, and the sensor
processing task LOS2 may reside on a single robot, or
be distributed between the pair, if necessary, to optimize
processor utilization or communication costs. They are
denoted with dotted ellipses. The functionality of the team
is not affected by altering the allocations of the control
tasks. However, a good allocation strategy does improve
schedulability.

The communication cost between tasks, if they are
distributed, is given in milliseconds on the corresponding
arc. The computation times of the tasks are given in
Table I. Computation times and communication costs were
determined experimentally on the platform.

The sensor and motor tasks IRi, POSi, and Mi are
designed to be updated periodically, and the control tasks

4

POS1

IR1

POS2

IR2

φS
2

LOS2

/2 M2

M1

2.979

0.02327

0.01236

0.01236

0.01236

0.02327

0.01236

2.979

0.0
12

36

Search Leader

Follower

φ
LOS2
1

Fig. 1. The pull controller task model for two robots. Preallocated tasks
are in solid ellipses, and dotted ellipses are tasks that may be distributed
across the pair. The communication cost between tasks (in milliseconds)
is shown on the arcs.

must execute periodically in order to consume the new
sensor data and give new motor commands. Consequently,
the periods of the control tasks should be based on the
periods of the sensor and motor tasks. We determined
experimentally that to achieve satisfactory performance,
the sensor and motor tasks should run at least every
200 ms. The period of execution of all the tasks in the
pull model determines the robot’s responsiveness, and
also affects the scalability of the system. After applying
the scheduling algorithm using the “aggressive” allocation
heuristic described in [8], we found that φS

2 , LOS2, and
/2 are assigned to site 2, and φLOS2

1 is assigned to site
1. With this allocation of tasks, the only communications
that require the wireless channel are LOS2 → φLOS2

1 and
φLOS2

1 → /2.

The generalizability of the pull task model allows a
robot to join the chain with only a minimal change in com-
munication structure. Only the leader and its immediate
follower execute the controller from equation (1), while
the rest of the robots execute the controller in equation (2).
A combined task model for a chain of n robots is shown
in Figure 2. Since the controllers are designed to have
the same real-time task characteristics and communication
patterns within the chain, and our approach captures such
recursive properties in advance, the result is a predictable
allocation for the additional tasks. A larger team can be
scheduled simply by generalizing the results from the
smaller team. For example, if the nth robot joins the head
of a chain with n− 1 members, tasks φS

n , LOSn, and /n

are known to be allocated to robot n. Also, schedulability
can be ensured by checking if the laxity time is larger
than the sum of the additional communication cost and
computation time introduced by the n member.

With the allocation of tasks shown in Figure 2, we see
that the only communication tasks that require the wireless
channel are LOSi → φLOSi

i−1 and φLOSi

i−1 → /i. Thus,
during every 200 ms period, both of those communication
tasks must be scheduled on the wireless channel for every
pair of robots in the team. This channel contention, along
with the length of the period and precedence constraints,

Follower 1

P OS1

IR1

φ
LOS2
1

M1

P OS2

IR2

φ
LOS3
2

LOS2

/2 M2

/3

Search Leader

LOSn

Follower 2

Follower 3

P OSn

IRn

φS
n

/n Mn

P OS3

IR3 LOS3

φ
LOS4
3

M3

Fig. 2. The task model for a chain of pull controllers for n robots.

imposes a limit on the total number of robots that can be
involved in a team.

How can the shared communication channel solution
scale for larger teams? This question is answered by the
analysis of the largest computation time within the team,
which is the sum of execution times of any tasks, including
communication tasks, along any path from an input task,
or set of input tasks (tasks without incoming edges), to
an output task (tasks without outgoing edges). We assume
that communication occurring within a site can be ignored.

For a team with n robots as in our pull model, with
the addition of a new robot, two communications need
to be considered: LOSi → φLOSi

i−1 and φLOSi

i−1 → /i,
i ≥ 2. Because the robots are autonomous except for
communication constraints between different members,
the tasks scheduled locally need only to satisfy precedence
constraints. For instance, POSi and IRi must be sched-
uled before φ

LOSi+1

i (φS
i for the leader) and /i can only

be scheduled to start after the completion of φ
LOSi+1

i (φS
i

for the leader) and φLOSi

i−1 → /i.

Now let us consider the schedule of a leader/follower
team. Initially, we start with a pair of robots. By using the
earliest deadline plus the earliest start time first strategy
[8], the leader has the longest execution time, since it
must 1) transmit data from LOS2 to φLOS2

1 using the
communication channel, and 2) wait for data from φLOS2

1 .
Because of the parallel task execution on two robots, the
total execution time of the leader is TL + CL→F , where
TL is the sum of execution times of tasks allocated to the
leader and CL→F is the total communication cost. TL and

5

CL→F are computed as:

TL = POS2 + IR2 + LOS2 + φS
2 + /2 + M2

= 20 + 20 + 1 + 25 + 10 + 20 = 96 ms

CL→F = (LOS2 → φLOS2

1) + (φLOS2

1 → /2)

= 2.979 + 0.01236 ≈ 2.99 ms.

The computation time of φLOS2

1 is not included since it
is equal to that of φS

2 ; otherwise, if it is larger, it needs
to be taken into account. Thus the total execution time of
the leader is TL + CL→F = 96 + 2.99 = 98.99 ms.

The laxity within one period is 200 − 98.99 =
101.01 ms. If a third robot joins the group and keeps
the same control pattern, then even though the other
tasks are running concurrently on different processors,
the communication channel must be shared. Hence, the
communication delay for each new member i comes from
the accumulation of LOSi → φLOSi

i−1 and φLOSi

i−1 → /i, a
delay of 2.979 + 0.01236 ≈ 2.99 ms. For a chain of size
n, the leader will always have the longest execution time
of

96 + 2.99(n − 1) ms.

Based on a period of 200 ms, the bound on the size of
the pull chain is

200 = 96 + 2.99(n − 1)

n = b
200 − 96

2.99
+ 1c = 35.

For the maximal chain size, the total execution time
required for the 35th robot is 96+2.99 · 34 = 197.66 ms.
Based on this analysis, we know that every 200 ms, each
robot can successfully complete their work and achieve
coordination. If more than 35 robots are involved, then
there is no guarantee that messages will be be able to reach
their destination before the task executes. This results in
tasks executing with old data, and the system performance
drops due to this time lag. A time-line showing the
schedule for a team of four robots is shown in Figure 3.

If, during the design phase, we find that that we need
to coordinate more robots than the upper bound, we can
split the team into small groups geographically at run-
time, where groups communicate with each other through
one specialized element of the team to share informa-
tion and/or decisions. Even though the communication
resource is limited, we can predict in advance the available
resources for a small group given the pre-analysis done
by our algorithm. At run time a dedicated hierarchical
communication model can be built just by looking up the
grouping of the robots. Another solution is to redesign the
system to reduce resource contention. This could entail
reducing the amount of communication needed between
members, by making the messages smaller, or eliminating
communication by restructuring the flow of messages.

The task model for the pull controller shown in Figure 1
is one possible way of designing the controller. We can
design multiple task models for a given controller and
evaluate them using the schedulability analysis algorithm
to determine how well they scale. Although many task

Channel
Wireless

Robot 4
(Leader)

POS1

POS2

POS3

IR1

IR2

IR3

LOS2

LOS3

LOS4

M2

M3

φS
4

M4

/3φ
LOS4

3

φ
LOS3

2
/2

M1φ
LOS2

1

LOS4 → φ
LOS4

3

LOS2 → φ
LOS2

1

/4

φ
LOSi
i−1

→ /i

LOS3 → φ
LOS3

2

0 ms 200 ms

Robot 1

Robot 2

Robot 3

POS4 IR4

Fig. 3. A feasible schedule for a four-robot pull chain. Note that the
schedule is not drawn to scale.

models achieve the same behavior, some are preferred
because they allow more robots to coordinate or they may
preserve more run-time flexibility when new or additional
tasks are introduced.

V. CONCLUSIONS AND FUTURE WORK

We have presented a distributed implementation of a
coordinated controller for leader/follower behavior main-
taining a line-of-sight constraint. We have analyzed the
task model for the controller and derived an upper bound
on the size of a feasibly scheduled, coordinated team. In
general, a distributed, real-time, multi-robot system has an
inherent scale that is a function of the hardware limitations
of the robots and the higher-level design of the system.
Resource limitations such as a shared communication
channel and limited bandwidth create an upper bound on
the number of robots that are able to coordinate within the
team with a feasible schedule. Schedulability of the overall
system should be taken into account so that the value of
coordination outweighs the costs. When designing a robot
system, a large group can be split into several smaller
teams at run-time, whose size is based on the results of
the schedulability analysis.

In the future, we plan on extending this work to teams
using a mixture of different controllers. The pull controller
has a symmetric pair controller (denoted a “push” con-
troller) that allows the follower to specify the LOS region
to the leader. In addition, push and pull controllers can
be combined along a chain in various combinations to
achieve a goal. We want to analyze the combinations of
controllers that a robot could have, so that at run-time the
robot may lookup the schedule from a precomputed table
when it joins a push/pull chain.

6

The work in this paper examines only one small part of
the structure that makes a scalable robot team. A complete
scalability analysis of a robot system would examine many
factors other than schedulability; reliability and ease of
maintenance are hardware-related factors that are particu-
larly important in robotic systems. Other software design
issues that affect scalability include interface usability; as
the team grows, the operator must be able to effectively
monitor or control the team’s progress. All of these issues
should be addressed during the design process of a robot
team.

VI. REFERENCES

[1] J. Albus, R. Lumia, and A. Wavering. NASREM:
The NASA/NBS standard reference model for teler-
obot control system architecture. In Proceedings
of the 20th Internation Symposium on Industrial
Robots, October 1989.

[2] R. Brooks. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, March 1986.

[3] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Coop-
erative mobile robotics: Antecedents and directions.
Autonomuos Robots, 4:1–23, 1997.

[4] S. Carpin and L. E. Parker. Cooperative leader
following in a distributed multi-robot system. In
Proceedings of IEEE International Conference on
Robotics and Automation. IEEE, 2002.

[5] J. Coelho and R. Grupen. A control basis for learning
multifingered grasps. Journal of Robotic Systems,
14(7):545–557, 1997.

[6] C. Connolly and R. Grupen. On the applications of
harmonic functions to robotics. Journal of Robotics
Systems, 10(7):931–946, 1993.

[7] B. P. Gerkey, R. T. Vaughan, K. Stoy, A. Howard,
M. J. Mataric, and G. S. Sukhatme. Most valuable
player: A robot device server for distributed control.
In Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
1226–1231. IEEE/RSJ, 2001.

[8] H. Li, J. Sweeney, K. Ramamritham, R. Grupen,
and P. Shenoy. Real-time support for mobile
robotics. Technical Report 03–08, University of
Massachusetts, Amherst, 2003.

[9] J. C. Palencia and M. G. Harbour. Exploiting
preceding relations in the schedulability analysis of
distributed real-time systems. In Proceedings of the
20th IEEE Real-Time Systems Symposium, December
1999.

[10] S. Schneider, V. Chen, J. Steele, and G. Pardo-
Castellote. The ControlShell component-based real-
time programming system, and its application to
the Marsokhod Martian Rover. In Proceedings of
the ACM SIGPLAN 1995 workshop on Languages,
compilers, & tools for real-time systems, pages 146–
155. ACM, 1995.

[11] J. A. Stankovic and K. Ramamritham. Advances in
Real-time systems. IEEE Computer Society, 1993.

[12] D. B. Stewart, D. E. Schmitz, and P. K. Khosla.
Implementing real-time robotics systems using
CHIMERA II. In Proceedings of IEEE International
Conference on Systems Engineering. IEEE, 1990.

[13] J. Sweeney, T. Brunette, Y. Yang, and R. A. Grupen.
Coordinated teams of reactive mobile platforms. In
Proceedings of IEEE International Conference on
Robotics and Automation. IEEE, 2002.

[14] E. Yoshida, T. Arai, J. Ota, and T. Miki. Effect of
grouping in local communication system of multiple
mobile robots. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 808–815. IEEE/RSJ, 1994.

